Saturday, December 10, 2011

Learning content similarity for music recommendation

Learning content similarity for music recommendation, TASLP 2011
by Brian McFee, Luke Barrington, and Gert Lanckriet

  • Metric learning to rank (MLR) = tr (W) + C/n*\sum (err_q), s.t. \deta<W,\pi>  >= \deta(y) - err_q;  solve the above obj by cutting-plane opt. (i.e., structured SVM)
  • Use top-\tau codeword histogram over mfcc as feature 
    • Motivation of using top-\tau (something like soft assignment): counteract quantization errors 
    • Experiment result shows this reduce the number of codewords needed
  • Represent each histogram in a probability product kernel (PPK) space to better exploit the geometry of codeword histograms.
    • Leads to better accuracy
  • Visualize result using t-SNE (http://homepage.tudelft.nl/19j49/t-SNE.html)

No comments:

Post a Comment